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Abstract. This paper presents the new fundamental concept of the hyper-effective drainage 
area, the area of the high severity burn plus the area of the moderate severity burn, and provides 
an empirical formula to estimate the 5-year peak discharge from small post-burn watersheds to 
demonstrate the use of the concept.   The equation uses the documented hydrologic response 
within the first two years after the occurrence of wildfire of ten watersheds in Southeast Arizona.   
These watersheds are within the forested steep terrain of the Santa Catalina, Santa Rita, and 
Pinaleno Mountains.   After the burns, frequent flash floods and occasional debris flows have 
occurred.   A few of the flash floods were particularly severe resulting in one fatality, several 
evacuations of flood prone areas, and the destruction of four stream gaging sites.   To predict the 
“likely” peak flow that can be expected before a given burned watershed is back to conditions 
that resemble pre-burn hydrology, an empirical equation was devised to estimate the post-burn 5-
year peak flow.   The developed equation works reasonably well (cross validation adjusted 
coefficient of determination of 0.90) for the documented watersheds.   Its ability to deal with 
topographic and geomorphologic diversity lies in the use of a multivariate runoff index that 
utilizes the hyper-effective drainage area (determined from burn severity), average basin 
elevation, and an objective modified channel relief ratio. 
 
Additional keywords: Arizona; Post-Burn Hydrology; Forest Hydrology; Peak Flows; Flash 
Floods; Modified Channel Relief Ratio; Hyper-Effective Drainage Area. 
 
Introduction 

Southeast Arizona has recently been impacted by several wildfires.   These include the 
Oracle Hill Fire (2002), Bullock Fire (2002), and Aspen Fire (2003) in the Santa Catalina 
Mountains; the Nuttall Fire (2004) in the Pinaleno Mountains; and the Florida Fire (2005) in the 
Santa Rita Mountains  (Figure 1).   After these wildfires, significantly increased runoff from the 
burn areas has occurred.   Rainfall amounts and intensities, which normally would have caused 
little if any, flooding, have produced dangerous flash floods during watershed recovery. 
 Often the National Weather Service is faced with predicting post-burn peak flows shortly 
after a fire, and sometimes, while the fire is still burning.   This urgency for forecasts does not 
allow for the use of the tools currently available to Burned Area Emergency Rehabilitation 
(BAER) teams for post-burn hydrologic analysis because these methods are either too data 
intensive, or too time consumptive, for use in a real-time operational setting.  Although burn 
severity information is usually not available in near real time, for operational purposes, a worst-
case scenario could be assumed until the data became available.   The outlet of the basin would 
be selected based upon potential damage to life or property, e.g., a bridge crossing or nearby 
housing. 
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This study presents the new fundamental concept of hyper-effective drainage area, the 
area of the high severity burn plus the area of the moderate severity burn, and provides an 
empirical formula to estimate the 5-year peak discharge ( 5Q ) from small watersheds, watersheds 
less than 15 square miles (38.8 square kilometers), during post-burn recovery to demonstrate the 
use of the concept.   Determining the 5-year return interval has proven an effective approach for 
similar burn studies (Reed 2002).   This is perhaps because research conducted on burned 
watersheds throughout the Rocky Mountains indicates hydrologic recovery to near pre-burn 
conditions within 3 to 5 years (Morris and Moses 1987, Martin and Moody 2001).  

A series of equations for different return intervals (e.g., 2-year and 10-year) also could be 
developed but was beyond the scope of this paper.   The 5-year peak discharge equation was 
developed by evaluating the hydrologic response within the first two years after the occurrence 
of wildfire of ten watersheds in Southeast Arizona: Frye Canyon, Deadman Canyon, Marijilda 
Canyon, Noon Creek, Wet Canyon, Upper Campo Bonito, Sabino Creek near Mount Lemmon, 
Alder Canyon at Ventana Windmill, (these first eight documented in Schaffner and Reed 2005a), 
Madera Canyon (described below), and Romero Canyon (also described below).   Additionally 
the information for Upper Campo Bonito was updated in Schaffner and Reed (2005b).  The 
methodology used to determine the 5-year post-burn flow for all ten basins was similar.   
Pertinent data are presented in Figures 2, 3, and 4. 

Cañada del Oro near Coronado Camp documented in Schaffner and Reed (2005a) was 
not used because it was a second year event likely preceded by undocumented first year events of 
larger magnitude.   Additionally, this basin at 21.6 square miles (55.9 square kilometers) is 
perhaps too large for the methodology used.   A cursory examination of the data for the 
downstream gage, Cañada del Oro at Rancho Solano, suggests that post-burn runoff from basins 
of this size (21.6 square miles) and larger may be better modeled using a technique that considers 
maximum rainfall rates rather than basin averages.  Another approach that may be worth 
evaluating is to use only the basin average for the hyper-effective drainage area. 

Eight of the ten basins are smaller than 10 square miles (25.9 square kilometers).   When 
considering only the hyper-effective drainage area, eight of the ten basins are smaller than 2.5 
square miles (6.5 kilometers).   Therefore, the spatial distributions of the entire storms were not 
generally considered important to this analysis.   However, what may have been important was 
for the storm core to have moved over at least a portion of the hyper-effective drainage area.   
This was common to all ten events.   Additionally, the importance of storm motion is evaluated. 

Burn areas yield an increase in debris and sediment as compared to pre-burn conditions 
(Robichuad 2000).   This study and its associated discharge measurements do not take into 
account added bulking of the flow due to debris or changes in sediment transport. 
 
Role of Mountainous Terrain 

Factors in peak discharge generation from burn areas, such as burn severity, basin size, 
terrain, rainfall amount, and storm intensity, can all play a key role.   In this study, an objective 
Southeast Arizona specific modified channel relief ratio1 was selected as an important indicator 

                                                 
1  The modified channel relief ratio was defined by the authors so as not to include the relief from the upper most 
area of the mountainous terrain of Southeast Arizona, which often is void of well defined channels.  The modified 
channel relief ratio is an objective measurement unlike the traditional channel relief ratio.   Additionally, the authors 
defined the modified channel relief ratio so as to include the channel relief in the vicinity of the basin outlet where 
flooding occurred. 
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of topographic diversity in the mountainous terrains evaluated.   The modified channel relief 
ratio is the average slope of the basin along the first order channel measured from 1,250 feet 
(381 meters) below the ridge to the basin outlet.   For small impervious areas, peak discharge 
will tend to increase as channel slope increases.   An increase in channel slope can result in 
decreased time of concentration and less infiltration.   This may be especially true for areas 
recently denuded or with new hydrophobic soils.   Post-burn flows originating from the Pinaleno 
Mountains had greater increases in runoff than those observed in the Santa Catalina Mountains.   
This was initially believed by the authors to be due to significant differences in the channel 
relief.  However, the Santa Rita Mountains with modified channel relief ratio similar to the 
Pinaleno Mountains had an increase in runoff similar to the Santa Catalina Mountains.  But the 
actual channel slope through the slope conveyance cross-section measured for the Santa Rita 
flood is similar to the modified channel relief of the Santa Catalina Mountains.  Therefore future 
studies may want to evaluate using channel slope through flooded reach rather than the modified 
channel relief ratio.   Modified channel relief ratio and other basin values are presented in Figure 
3.   Average basin elevation was also selected as an important variable for mountainous terrain.   
The average basin elevation is the average altitude above mean sea level using the elevation of 
the highest point of the basin and the elevation of the basin outlet.  In addition to being an 
indicator of rainfall variability and local climate, average basin elevation in mountainous terrain 
is indirectly an indication of vegetation coverage and type (Brown 1982); and perhaps to a lesser 
degree, indirectly an indicator of soil depth and predominant soil characteristics (Hendricks 
1985).   Initially, the authors thought the usefulness of the average basin elevation could also be 
because the higher organic matter in the higher elevation soils (in contrast to lower elevation 
soils with less organic matter) played a key role in the likelihood of the higher elevation soils 
developing hydrophobic conditions.   Yet for very high elevations there may be: 1) more exposed 
bedrock, 2) no channel development, 3) less natural vegetation, and 4) where soils occur they 
may tend to be shallow; such conditions would likely result in an inverse relationship between 
elevation and increased post-burn runoff.   Simply put if you burn rock it is still rock, resulting in 
very little—if any—change in hydrologic response.   Other indicators evaluated by the authors 
but not selected included the traditional channel relief ratio, main channel slope index, basin 
relief ratio, average channel elevation, mean main channel elevation, and traditional drainage 
area. 
 
Methodology 

The methodology used to determine the 5-year post-burn flow for all ten basins was 
similar.   The details for Frye Creek, Deadman Canyon, Marijilda Canyon, Noon Creek, Wet 
Canyon, Upper Campo Bonito, Sabino Creek near Mount Lemmon, and Alder Canyon at 
Ventana Windmill are documented in Schaffner and Reed (2005a).   The information for Upper 
Campo Bonito was updated in Schaffner and Reed (2005b).   The details for Madera Canyon and 
Romero Canyon are provided below. 

To create the empirical formula the first step was to determine the 5-year post-burn flow 
for the basins.  The steps required were 1) calculate the basin average precipitation for events 
known to have caused floods from the burned basins (an attempt was made to use the first major 
flush after a burn) and document storm duration, 2) determine the return period of these rain 
events, 3) determine the peak flow of the flood event, 4) calculate the pre-burn peak flow for the 
corresponding return period of the precipitation event, 5) calculate the pre-burn 5-year peak 
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flow, 6) calculate the ratio of pre-burn peak flow to post-burn peak flow2, and 7) multiply the 
pre-burn 5-year peak flow for a basin (determined in step 5) by the corresponding ratio 
(determined in step 6).    For the two cases, Marijilda and Alder, where the return period of the 
precipitation event was a 5-year event, steps 4 through 7 were not necessary but were done for 
consistency and display purposes.   Results of steps 1 through 4 are presented in Figure 2.   
Results of step 5 are presented in Figure 4.   Results of Steps 6 and 7 are presented in Figure 3. 

The t-year rainfall is commonly used in applied hydrology to calculate a t-year flood, for 
example this is a major input of the rational method, as well as the model TR55 (Natural 
Resources Conservation Service, 1986) commonly used by the Forest Service to estimate post-
burn runoff response.  For the rational method a rainfall intensity for a duration equal to the time 
of concentration is used.   For TR55 a rainfall with a duration of 24-hours is used with a rainfall 
time distribution designed to contain the intensity of any duration of rainfall for the frequency of 
the event chosen.   Or as stated by Natural Resources Conservation Service (1986):  “That is, if 
the 10-year frequency, 24-hour rainfall is used, the most intense hour will approximate the 10-
year, 1-hour rainfall volume.” 

For this paper, it was assumed that a short-term thunderstorm with a duration 
approximately equal to or greater than the time of concentration for the burned basin, of a 
particular frequency, produces a peak flood discharge of the same frequency.  Whereas this may 
be an oversimplification, it will always be a conservative one that overestimates the t-year flow 
for relatively impervious burned basins in the mountainous terrain of Southeast Arizona.   In the 
United States, it is a common assumption made by land management agencies when trying to 
calculate t-year flows for ungaged basins in arid and semi-arid regions. 

Time of concentration for the ten studied basins range from 0.3 to 1.2 hours (Figure 2).   
Duration of the event storms ranged from 0.5 to 1 hours (Figure 2).   For all but one case, the 
duration of the flood-causing storm was approximately (within 0.2 hours) equal to or greater than 
the time of concentration.  The exception was Romero Canyon.  For Romero Canyon, the 
duration of the storm was approximately 0.5 hours while time of concentration is 1.1 hours.   
Therefore, the post-burn 5-year peak flow may have been slightly underestimated for this basin.   
However, it has also been observed that time to peak can be shorter for burned basins (Neary and 
others, 2003), if so, even Romero Canyon’s case study storm duration could have been 
approximately equal to the time of concentration for the then existing post-burn watershed 
conditions. 

Another possible oversimplification of this paper was the use of the same ratio of pre-
burn to post-burn flow for return intervals different than the 5-year storm (e.g. 2-year) to 
calculate post-burn 5-year flow from the corresponding pre-burn 5-year flow.  The authors felt 
that this assumption was acceptable because half of the events were close to a five-year event, 
i.e., five of the ten events were 2-year, 3-year or 5-year events.  Additionally, of the remaining 
five events, three had return intervals less than the 2-year event (they were approximately 1-year 
events) and two had return intervals greater than the 5-year event (both were 10-year events).  
Whereas the ratios likely are different for smaller events than larger events, it was felt that this 
clustered “balanced” distribution would reasonably offset the tendency for an unacceptable over-
or-under estimation. 

Another way to look at the relationship of pre-burn to post-burn flows (resulting in the 
same values as above) is to assume that the ratio of the magnitude of the pre-burn t-year event to 
the magnitude of pre-burn 5-year event would remain essentially the same for post-burn events 
                                                 
2 This ratio is calculated by dividing the result of step 3 by the result of step 4. 
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of the same respective return intervals.   Once again, this seems a reasonable approach when 
return intervals equal to or less than the 10-year return interval are used. 
 
Madera Canyon 

Madera Canyon is a 4.00 square mile (10.35 square kilometers) watershed.   On August 
8, 2005, 0.70 inches (17.78 millimeters) fell in about 45 minutes.   The basin average 
precipitation frequency for Madera Canyon event was less than a 1-year event using NOAA 
Atlas 14 Volume 1 (Bonnin and others, 2004).   On January 23, 2006, the authors conducted a 
field survey of the high water mark and associated channel geometry for Madera Creek near the 
U.S. Forest Service amphitheater.   The high water mark was 7 feet (2.13 meters) above the 
channel thalweg.   The cross section perpendicular to the direction of the flood flow was 
trapezoidal with a top width of 38.2 feet (11.64 meters) and a base of 15 feet (4.57 meters) 
resulting in a cross sectional area of 186.2 square feet (17.3 square meters).   Channel slope 
through this cross section was 0.094 feet/feet (0.094 meters/meters).   Manning’s “n” was 
estimated at 0.15.  The velocity of the peak flow was calculated to be 8.20 feet/sec (2.50 
meters/sec).   The peak flow was calculated as 1526 cfs (43.22 cubic meters per second) +/- 10 
percent.  Such a flow would be in the range of a 20-year pre-burn flow (Figure 5).   This is a 
post-burn peak discharge increase of at least 6.8 times greater than pre-burn peak discharge.   
The 5-year post-burn flood is therefore estimated using this ratio to be greater than 4,476 cfs 
(126.76 cubic meters per second). 
 
Romero Canyon 

Romero Canyon is a 7.25 square mile (18.78 square kilometers) basin located on the 
southwest side of the Santa Catalina Mountains.   At 6:00 PM MST of July 24, 2003, a north-
south line of thunderstorms developed in the San Pedro River Valley to the east and pushed 
westward over the Santa Catalina Mountains at 15 mph (24.14 kilometers per hour).   Rain fell 
on the Romero Canyon basin from about 6:30 to 7:30 PM.   Tucson’s KEMX WSR-88D radar as 
well as five Pima County Flood Control rain gages sampled the thunderstorms.   Storm motion 
during the event was generally up to down-stream over Romero Canyon.  This likely added to 
the magnitude of the peak; perhaps resulting in a peak flow up to 3.0 times greater than other 
storm motions. 

A basin average rainfall value was obtained for the Romero Canyon event by averaging 
radar bins that fell within the basin from the one-hour precipitation product.   A basin average 1-
hour rainfall value of 2.35 inches (59.69 millimeters) was obtained.   Since radar rainfall can be 
overestimated in the desert southwest due to hail contamination and dry air at the low levels, it is 
desirable to adjust the radar values if there is significant variation from rain gage totals.   While 
no rain gages are located within the Romero Canyon basin, two are located within 2 miles (3.22 
kilometers) of the basin boundary.   These two gages show that only 63 percent of the radar 
indicated rainfall reached the ground. 

Satellite imagery, radar, and lightning data remained consistent as the storm progressed 
from east to west across the Santa Catalina Mountains.   As a result, there is confidence to use a 
regional approach to determine the best possible radar correction factor to compute an adjusted 
basin average rainfall.  Using the above-mentioned rain gages, a radar correction factor of 0.85 
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was obtained.   As a result, 2.00 inches (50.8 millimeters) was the adjusted basin average 1-hour 
rainfall. 

Because the majority of rainfall from summer convective storms tends to fall in a 
timeframe less than an hour, it is advantageous to examine precipitation frequency with respect 
to peak rainfall.   The five rain gages showed 80 percent of the rain fell within 30 minutes.   
Values ranged from 78 – 83 percent of rain fell within 30 minutes.   Due to the narrow range of 
values between individual gages, the regional approach is once again valid.   Thus 80 percent of 
the adjusted basin average 1-hour rainfall yields a 1.60 inches (40.64 millimeters) adjusted basin 
average 30-minute rainfall.  According to NOAA Atlas 14 Volume 1, this amounts to a 10-year 
30-minute basin average precipitation frequency. 

Ann Youberg of the Arizona Geological Survey estimated the resultant flash flood at 
9,500 cfs (269.04 cubic meters per second) +/- 15 percent.   This estimate was derived by Ann 
Youberg using the HEC-RAS step backwater model with 5 cross sections.    Such a flow would 
be greater than a 500-year pre-burn flow (Figure 6).   This is a post-burn peak discharge increase 
of 6.7 times greater than pre-burn peak discharge.   The 5-year post-burn flood is therefore 
estimated using this ratio to be 6,035 cfs (170.90 cubic meters per second). 
 
Frye Creek Multiple Events Considered  

The multiple events for Frye Creek documented in Schaffner and Reed (2005a) and 
presented in Figure 7 can be used to demonstrate the importance of using the first major 
hydrologic flush from the basin after the burn for calculating the maximum likely post-burn 5-
year response.   If the post-burn response calculated for each subsequent event were used, the 
calculated post-burn 5-year peak flow would be approximately half of the post-burn 5-year peak 
flow calculated using the preceding event (see Figure 8).   Therefore an attempt was made to use 
only the first hydrologic flush from the ten basins after the burns to determine the maximum 
likely 5-year post-burn peak flow.  Therefore, for Frye Creek, July 27, 2004 is used. 
 
General Basin Response 

The basin response differences between individual basins and between mountain ranges 
are illustrated in Figure 4.   The Santa Catalina Mountains have an average post-burn basin 
response 3.8 times greater than pre-burn conditions.   The Santa Rita Mountains have a post-burn 
basin response 6.8 times greater than pre-burn condition.   The Pinaleno Mountains have an 
average post-burn basin response 106.6 times greater than pre-burn conditions.   The Santa 
Catalina and Santa Rita Mountains have values similar to those reported by Reed (2002), NOAA 
National Weather Service for the White Mountains in Arizona and the Pinaleno Mountains have 
values similar to those reported by Veenhuis (2002), U.S. Geological Survey for the Jemez 
Mountains in New Mexico. 
 
An Empirical Formula to Estimate 5-Year Peak Discharge from Small Post-Burn 
Watersheds 
 

Because it takes 3-5 years or in some cases longer (Livingston, R. K. and others, 2005) 
for a watershed to recover from high and moderate severity burns, an empirical equation for 
predicting post-burn runoff for the 5-year return interval is presented here (Figure 9).   The 
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presented equations (envelope curve and best-fit) are representative of the conditions prevalent 
during the first two years of recovery; and therefore, are expected to be useful for initial burn 
recovery planning as well as operational forecasting.  These equations use a multivariate runoff 
index defined as 

x = 28.1254.0)1000( −φβαψ       (1) 
where 
 x = multivariate runoff index 
 α = high severity burn + moderate severity burn as a fraction of total watershed 

(square miles/square miles); 
 ψ = total drainage area (square miles); 
 β = modified channel relief ratio (feet/feet); and 
 φ = average basin elevation above mean sea level (thousands of feet). 

The envelope curve equation is  
5Q 65.0)(4114 x=                 (2) 

and the best-fit equation is 
x1993Q5 =         (3) 

 where 
  5Q = post-burn runoff for the 5-year return interval (cfs). 

The adjusted R-square value for the best-fit curve is 0.96.   The envelope curve was 
developed by adding 25% (the largest reported flow measurement error) to the values for 
Deadman, Romero, and Marijilda Canyons; and then fitting a power curve to these data points.   
A power function was used to insure the curve went through the origin, (0,0). 

These equations are for small watersheds less than 15 square miles (38.8 square 
kilometers); and include sites with average basin elevations from 5500 to 8100 feet (1676.4 to 
2469 meters) above msl.   After several tries to fit the data, the authors found that weighing the 
burned area heavily, in this case using the high and moderate burn area as the only contributing 
area3, using modified channel relief ratio as an indicator of basin steepness, and using average 
basin elevation as an indicator of predominant vegetation and soil characteristics, provided a 
reasonable fit.   The best-fit equation neither significantly overestimates nor significantly 
underestimates the post-burn runoff for any watershed. 

 
Storm Motion Considered 

To evaluate the possible influence of storm motion, Romero Canyon, the only storm that 
moved from upstream to downstream (see Figure 2), was temporarily removed.   The new 
envelope curve equation for the remaining 9 data points is  

5Q 56.0)(5293 x=                 (4) 
and the corresponding best-fit equation is 

x1949Q5 =         (5) 
 where 

 5Q = post-burn runoff for the 5-year return interval (cfs). 

                                                 
3 The hyper-effective drainage area, α times ψ in the first equation or the area of the high severity burn (square 
miles) plus the area of the moderate severity burn (square miles). 
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The adjusted R-square value for the new best-fit curve is 0.97.   The new envelope curve 
was developed by adding 25% (the largest reported flow measurement error) to the values for 
Noon and Deadman Canyons; and then fitting a power curve to these data points.  As can be 
seen, equations 3 and 5 are essentially the same.   The relationship between envelope equations is 

    y = 1605.1)(1963.0 x        (6) 
where 
 y = equation 2; and 
 x = equation 4. 
Equations 4 and 5 are presented here for comparison with equations 2 and 3 only.   To 

allow direct comparison the definition of the multivariate runoff index has been held constant.   
Since the best-fit equations are essentially the same, and the difference between envelope curves 
is within the reported error of observations, the continued use of equations 2 and 3 are 
recommended. 

 
Validation of Equation 

The leave-one-out cross validation technique was used to test the regression equation 
ability to predict Q5.   This technique allows each data point to be treated, one at a time, as 
independent data (Wilks 2006, see page 215 for a more detailed description of this method).   
Using this process a cross validation adjusted R-square value of 0.81 was obtained with a 
corresponding cross validation standard error of 1757 cfs (49.8 cubic meters per second).   This 
yields a cross validation adjusted coefficient of determination (adjusted correlation coefficient) 
of 0.90.   This is considered by the authors to represent an acceptable forecast precision, and 
therefore, the authors feel confident in the use of the equations operationally to predict the 
“likely” peak flow that can be expected before a given burned watershed is back to conditions 
that resemble pre-burn hydrology.   However, as more data becomes available, these equations 
should be updated and their usefulness further tested. 

  
Discussion  

The USGS equations for estimating flood-frequency relations in USGS Water-Supply 
Paper 2433 (Thomas 1997) specifically the relationships for the 5-year event in Southeast 
Arizona do not use an elevation measurement for Region 13 (this region includes the Santa 
Catalina and Santa Rita Mountains); and uses an inverse relationship for elevation for Region 14 
(this region includes the Pinaleno Mountains).   In order to have a reasonable data set for post 
burn events, we had to evaluate these regions lumped together.  An analysis of the data separated 
into these regions hints that an inverse relationship for average basin elevation would be 
significant for the post-burn Region 13 basins but perhaps not for the post-burn Region 14 
basins.  This is likely because all the basins had a relatively high average basin elevation 
regardless of what region they were in, and perhaps because neither region had enough data for a 
more rigorous analysis.   An equation using just the hyper-effective drainage area and the 
modified channel relief ratio, i.e., an equation that does not use an elevation measurement, was 
found to have an adjusted R-square value of 0.93.   Therefore, a bivariate equation could be 
developed with essentially the same success as the multivariate approach.  However, average 
basin elevation was considered useful to help discern between different mountain ranges and was 
retained.   As more data becomes available it may become possible to develop separate equations 
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for these regions.  At that time it may be that a multivariate approach will work best for post-
burn Region 13 and a bivariate approach will work best for post-burn Region 14. 

It is interesting to note that the USGS equations do not use a relief ratio or other 
measurement of slope for these regions.  Also as would be expected for pre-burn equations, the 
USGS equations use the entire drainage basin (not a portion of the basin, i.e., hyper-effective 
drainage area).   Perhaps these differences between the pre-burn equations and those presented 
here underscores that post-burn hydrology can be significantly different from normal conditions. 

The direct relationship between 5-year peak flow and basin size does not necessarily 
pertain to burned watersheds (Figure 10).   Noon Creek, with the largest value for the Post-Burn 
runoff, has neither the steepest modified channel relief ratio nor the highest average basin 
elevation; neither the largest burned area nor the largest basin size.  Yet Noon Creek does have 
the highest multivariate runoff index.   As can be seen in Figure 10, the best-fit equation value 
(light blue/fourth bar) underestimates (although not significantly) the target post-burn value4 
(blue/third bar) for Wet, Frye, Romero, and Alder Canyons.   However, as intentionally 
developed, the envelope curve values (burgundy/fifth bar) are greater than target post-burn 
values for all ten sites.   Additionally, the envelope curve begins to “flatten” faster than the best-
fit curve (Figure 9), and thus displays the curve shape expected for larger basins (generally larger 
index values).   Therefore, for conservatively estimating 5-year post-burn runoff in Southeast 
Arizona watersheds, the envelope curve (equation 2) should be used.   For situations where post-
burn hydrology is not significantly different than normal conditions (when the hyper-effective 
drainage area is a small portion of the total drainage area) the results of the post-burn envelope 
curve and a pre-burn 5-year equation should be compared and the higher result used. 

 
Conclusions 

Common rainfall events can cause large peak flows in basins recently burned.   Peak 
flows from post-burn mountainous terrain may be several orders of magnitude greater than what 
they would have been for pre-burn conditions.  This was observed for various watersheds in the 
Santa Catalina, Santa Rita, and Pinaleno Mountains.  Since 3 to 5 years is a reasonable rule of 
thumb for recovery of burned watersheds, a 5-year rainfall event should be expected during the 
recovery period.   The probability of occurrence of one or more events equal to or greater than 
the 5-year event in 5 years is 67%.   In order to evaluate the minimum peak flow that can be 
expected before a given burned watershed is back to conditions that resemble pre-burn 
hydrology, an empirical equation was devised to predict the 5-year peak flow.   This equation 
works reasonably well for the recently burned watersheds of the Santa Catalina, Santa Rita, and 
Pinaleno Mountains.   Its ability to deal with such topographic and geomorphologic diversity lies 
in the use of a multivariate runoff index that utilizes the hyper-effective drainage area 
(determined from burn severity), average basin elevation, and an objective (Southeast Arizona 
specific) modified channel relief ratio.   The hyper-effective drainage area approach may be 
representative of two contrasting runoff conditions: 1) significant runoff from burn areas with 
hydrophobic soils, under such circumstances all rainfall can essentially be considered in excess 
of soil moisture needs; and 2) little runoff from dry non-burned areas where there may have been 
little if any excess. 

                                                 
4 The target values are those values determined by Schaffner and Reed (2005a) and were updated as shown in 
furthest right column of Figure 3. 
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In light of the difficulty in estimating increased peak flow from burned areas, empirical 
equations represent a significant tool for estimating peak flow.  Several flow events from various 
watersheds are required for the geographic area in question.   If a different probability of 
occurrence is desired, a curve could be developed for a different return interval using the 
methods described above.   However, for return intervals greater than the 10-year return interval, 
the method to calculate post-burn peak flow would have to be modified to take into account that 
the ratio of pre-burn to post-burn would not be the same for large magnitude events. 
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A Few Words Regarding the Cover Photograph 

This boulder levee is an interesting feature of our studies.   Such levees are characteristic 
of debris flows.  From USGS Open File Report 97-136 by Susan H. Cannon:  "Debris-flow 
deposits are characterized by significant relief and sharp, well-defined flow boundaries. Levees 
lining the flow path, or a veneer of mud coating the channel sidewalls, as well as steep, lobate 
deposits of matrix-supported material at the path terminus are characteristic of this flow 
process."  We tend to believe that the levee was the result of a debris flow prior to a water flow 
and that the peak flow was a water flow that did over topped the levee as evidenced by the 
"debris" against the tree and the lack of mud stained walls.  So a possible order of the events is 1) 
debris flow, 2) levee deposited, 3) frontal lobe of debris / hyperconcentrated flow, 4) overtopping 
of levee by water flow with floating debris, 5) wrapping of floating debris against tree, 6) peak 
flow, 7) retreat of water flow to channel during falling limb of hydrograph.  Note: steps 1-5 
would occur during rising limb of hydrograph.  Perhaps steps 1 and 2 would be considered a 
separate geo-hazard event, followed by a second hydrological event consisting of steps 3 through 
7.  Of course this is all conjecture.   Finally it seems to us that the levee was washed clean of any 
mud coating due to the overtopping by water or perhaps subsequent rain. 
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Figure 1:  Map displaying locations of Santa Catalina, Santa Rita, and Pinaleno Mountains in 
southeast Arizona. 
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Figure 2:  Southeast Arizona post-burn flood database for ten basins. 

 

                                                 
~  July 27, 2004. 
♦ Value updated based upon October 6, 2004 written communication from USGS (Tadayon, 2004) providing a new 
peak flow estimate for the flood of August 17, 2004.   
# Value updated based upon January 24, 2006 survey of high water marks by authors and subsequent slope 
conveyance. 

SOUTHEAST ARIZONA POST-BURN FLOOD DATABASE FOR TEN BASINS 
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Average 
Precipitation 

 
 
 

(inches) 
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Duration 
 
 
 
 

(hours) 
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Concentration 
 
 
 
 

(hours) 
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Return 
Interval 

 
 
 

(t-years) 

 
Peak Flow 
of Flood 

 
 
 
 

(cfs) 
 

 
Pre-Burn 

Peak Flow 
of Rainfall 

Return 
Interval 

 
(cfs) 

Frye Creek 
0.40 0.5 across 0.6 < 1-year 1400~ 18.5  

Deadman 
Canyon 1.00 0.5 across 0.5 3-year 5500 67.2  

Marijilda 
Canyon 1.25 0.7 across 0.8 5-year 8470♦  313 

Noon 
Creek 0.94 0.4 across 0.4 2-year 2684#  19 

Wet 
Canyon 

 
0.8 

 
0.7 across 0.3 1-year 1490 7.2  

Upper 
Campo 
Bonito 

1.51 0.5 stationary 0.3 10-year 1900 586  

Sabino 
Creek near 
Mount 
Lemmon 

1.25 1 stationary 0.6 2-year 350 119  

Alder 
Canyon at 
Ventana 
Windmill 

1.60 1 down to up 1.2 5-year 3103 1260  

Madera 
Canyon 0.70 0.75 stationary 0.4 < 1-year 1526 224  

Romero 
Canyon 1.60 0.5 up to down 1.1 10-year 9500  1420 
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Figure 3:  Additional selected basin values for study watersheds in the Pinaleno, Santa Catalina, 
and Santa Rita Mountains.   Note: Madera and Romero Canyons recently added and documented 
in this paper. 

                                                 
♦ Value updated based upon October 6, 2004 written communication from USGS (Tadayon, 2004) providing a new 
peak flow estimate for the flood of August 17, 2004.   
# Value updated based upon January 24, 2006 survey of high water marks by authors and subsequent slope 
conveyance. 
* This value corrected to reflect that event storm was actually a 1-year event. 
** This value corrected to reflect Region 13. 
*** This value corrected to reflect that event storm was actually a 5-year event. 

ADDITIONAL SELECTED BASIN VALUES 

 
Watershed 

 
Location 

 
Modified 
channel 

relief ratio 
 
 
 

(ft/ft) 

 
High 

severity burn 
+ Moderate 

severity burn 
 
 

(%) 
 

 
Average 

basin 
elevation 

above mean 
sea level 

 
(ft/1000) 

 
Drainage 

area 
 
 
 
 

(sq  mi) 
 

 
Pre-burn 
5-year 
peak 

discharge 
 
 

(cfs) 

 
Post-burn 

5-year 
discharge 
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Frye Creek Pinaleno 
Mountains 0.19 61 8.1 4.02 116 8778 

Deadman 
Canyon 

Pinaleno 
Mountains 0.22 51 7.7 4.78 137 11213 

Marijilda 
Canyon 

Pinaleno 
Mountains 0.15 59 7.1 11 313 8470♦ 

Noon 
Creek 

Pinaleno 
Mountains 0.24 77 7.7 2.99 86 12149# 

Wet 
Canyon 

Pinaleno 
Mountains 0.26 44 8.1 1.58 45.5 9416* 

Upper 
Campo 
Bonito 

Santa 
Catalina 
Mountains 

0.07 80 5.5 1.5 376  1219** 

Sabino 
Creek near 
Mount 
Lemmon 

Santa 
Catalina 
Mountains 0.07 55 8.2 3.4 278 818 

Alder 
Canyon at 
Ventana 
Windmill 

Santa 
Catalina 
Mountains 0.08 35 6.1 14 1260 3103*** 

Madera 
Canyon 

Santa Rita 
Mountains 0.22 15 7.2 4 657 4476 

Romero 
Canyon 

Santa 
Catalina 
Mountains 

0.12 34 5.7 7.25 902 6035 
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 Figure 4:  Basin Response under burn conditions for various watersheds in the Santa Catalina, 
Campo Bonito, Sabino, Alder, and Romero), Santa Rita (Madera), and Pinaleno Mountains 
(Marijilda, Frye, Noon, Deadman, and Wet).  
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Madera Creek 
Return Period Pre-Burn Flow Post-Burn Flow 

2-year 271 cfs (7.67 m3/sec) 1846 cfs (52.25 m3/sec) 

5-year 657 cfs (18.61 m3/sec) 4476 cfs (126.67 m3/sec) 

10-year 1030 cfs (29.17 m3/sec) 7017 cfs ( 198.59 m3/sec) 

25-year 1660 cfs (47.01 m3/sec) 11310 cfs (320.06 m3/sec) 

50-year 2220 cfs (62.87 m3/sec) 15125 cfs (428.03 m3/sec) 

100-year 2960 cfs (83.83 m3/sec) 20166 cfs (570.71 m3/sec) 

500-year 5040 cfs (142.73 m3/sec) 34338 cfs (971.75 m3/sec) 

Figure 5:  Peak flows for Madera Creek.  The pre-burn flows were calculated using the National 
Flood Frequency (NFF) method for Southern Arizona Region 13 (Ries and Crouse, 2002).   The 
maximum flow calculated from Crippen and Bue (1977) method is 30,300 cfs (858.10 m3/sec).   
Note: The Post-Burn Flow values for events greater than the 10-year event are not considered as 
reliable as those for the return intervals equal to or less than the 10-year event.   These less 
reliable values were not used in the development of the empirical equation. 
 

 

 

 

 

 

 

 

 

 



   18

Figure 6: Peak flows for Romero Canyon.  The pre-burn flows were calculated using the 
National Flood Frequency (NFF) method for Southern Arizona Region 13 (Ries and Crouse, 
2002).   The maximum flow calculated from Crippen and Bue (1977) method is 49,200 cfs 
(1393.34 m3/sec).   Note: The Post-Burn Flow values for events greater than the 10-year event 
are not considered as reliable as those for the return intervals equal to or less than the 10-year 
event.   These less reliable values were not used in the development of the empirical equation. 
 

 

 

 

 

 

 

 

 

 

  Romero Canyon 
Return Period Pre-Burn Flow Post-Burn Flow 

2-year 372 cfs (10.54 m3/sec) 2490 cfs (70.52 m3/sec) 

5-year 902 cfs (25.54 m3/sec) 6035 cfs (170.90 m3/sec) 

10-year 1420 cfs (40.21 m3/sec) 9515 cfs (269.46 m3/sec) 

25-year 2290 cfs (64.85 m3/sec) 15340 cfs (434.43 m3/sec) 

50-year 3070 cfs (86.94 m3/sec) 20600 cfs (583.39 m3/sec) 

100-year 4090 cfs (115.83 m3/sec) 27400 cfs (775.97 m3/sec) 

500-year 7020 cfs (198.81 m3/sec) 47000 cfs (1331.04 m3/sec) 
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Figure 7:  Multiple Events For Frye Creek. 
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Figure 8:  Calculated 5-Year Peak Flows For Sequential Events on Frye Creek. 
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 Figure 9:  An empirical equation to estimate post-burn runoff during recovery (Southeast 
Arizona Watersheds).   2nd year = those events that occurred during the second year after the 
burn; the other 9 events occurred during the first year after the burn.   These equations are for 
small watersheds less than 15 square miles (38.8 square kilometers); and include sites with 
average basin elevations from 5500 to 8100 feet (1676.4 to 2469 meters) above msl.      
Multivariate runoff index = 28.1254.0)1000( −φβαψ ; where α = high severity burn + moderate 
severity burn as a fraction of total watershed (square miles/square miles); ψ = total drainage area 
(square miles); β = modified channel relief ratio (feet/feet); and φ = average basin elevation 
above mean sea level (thousands of feet).   Note: α times ψ in above equation = hyper-effective 
drainage area. 
 

 

y = 4113.6x0.653

y = 1993.4x1.0035

R2 = 0.9747

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Multivariate Runoff Index

Envelope Curve

Pe
ak

 F
lo

w
 (c

fs
)

2nd year

Best Fit Equation

R2
adj = 0.96

Cross Validation Standard Error = 1757 cfs
Cross Validation Adjusted Correlation Coefficient = 0.90
Cross Validation R2

adj = 0.81

predictive equation: peak flow = 1993 times multivariate runoff index

An Empirical 5-Year Post-Burn Runoff Equation for Southeast Arizona Watersheds



   22

Figure 10:  As basin size increases from left to right, the peak flow generally increases using pre-
burn equations (yellow/first bar & red/second bar).   The Post-Burn equations results are very 
different (light blue/fourth bar & burgundy/fifth bar).   The target post-burn value is shown in 
blue/third bar.   Peak flows are shown in cubic feet per second (cfs).
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